PARTY AT THE POLLS

Analysis of When We All Vote's 2024 Party At The Polls program and experiments

Conducted by: Ruairí Ó Cearúil, Emily Hilty, Shrija Ghosh In partnership with: Dr. Donald Green

August 2025

Party at the Polls is an evidence-based program that boosts voter turnout among voters of color and young voters in key elections by promoting parties near early voting locations and encouraging voters to make their voices heard.

In 2024, When We All Vote conducted two Randomized Control Trials (RCTs) to evaluate the most efficient Party at the Polls advertisement methods and modes, and completed a suite of post-election analysis to show the impact of the program as a whole.

2024 Program Impact

567+ parties in AZ, FL, GA, MI, NC, PA, and WI

\$1,490,000 in grants to 172 partner organizations

85,000+ estimated attendees

13.5M+ voters reached via mail, SMS, and phone

3.2M accounts reached on social media and **625 media hits**

EXPERIMENT OVERVIEW:

Voter Outreach Mix

Detailed pre-analysis plans available on OSF:

- Voter Outreach RCT
- <u>Digital Ads RCT</u>

Our research was motivated by a desire to evaluate our traditional Party at the Polls outreach strategy and explore opportunities to optimize the impact and cost effectiveness of our voter outreach.

We conducted two related RCTs in Nevada and Michigan during the early-voting period in fall 2024. The target audience in these experiments was comprised of voters under the age of 35 and voters of color of any age.

Experiment #1

Standard Mix

1 mail piece, 2 phone calls, 2 text messages, and Party at the Polls event

Light Mix

1 mail piece, 1 text message, and Party at the Polls event

Control

No outreach and no Party at the Polls event

Experiment #2

Digital Mix

2 phone calls, 2 text messages, Meta ads, and Party at the Polls event

Control

No outreach and no Party at the Polls event

Summary of Findings

Quantitative Findings

For Experiment #1, we found that the Standard Contact Mix was more cost effective at turning out voters, with an estimated cost/net vote between \$19-\$23, than our Light Mix (\$21-\$26).

Experiment #1, our turnout effects were stronger among the under-35 cohort (+3.4pp) and among voters who registered since the last midterm (+4.9pp), reinforcing findings from 2022.

For Experiment #2, our results were not significant due to narrow digital ads targets and a small sample of zip codes.

We found no detectable difference in turnout for those who were fully contactable across modes as compared to those who lacked a landline phone.

Our Party at the Polls program continues to turn out When We All Vote's target audience. Our treatment group had an average intent-to-treat (ITT) turnout effect of **+2.3pp,** an increase from our turnout effects in 2022 (+1.2pp).

Results Analysis

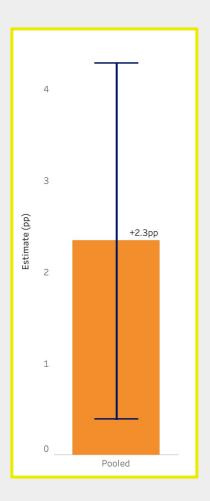
Qualitative Findings

We attribute the success of this program in 2024 to the early investment by funders that enabled smarter selection of early voting sites and better program implementation. Both due to implementation challenges and measured impact, we recommend removing (robo) phone calls from our standard mix of outreach to prospective voters in the future.

Our findings are surprising given that they are both large (>1pp) in a presidential election and greater than our turnout effect in 2022.

Granular targeting can improve both programming and our ability to detect programmatic impact, since it enables us to contact people who live close to a Party at the Polls event to maximize their likelihood of engaging with us.

Our large confidence intervals for Experiment #1 suggest that the true turnout effect varied across the 89 early voting sites in our sample and our measurement of turnout effects remains imprecise.

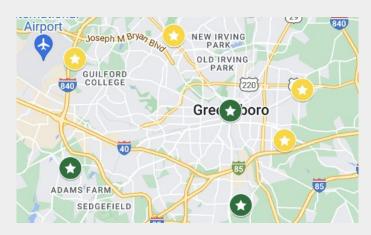


Key Considerations

The confidence interval indicates a positive, non-zero turnout effect of Party at the Polls programming. The wide confidence interval suggests that the exact estimate may be imprecise.

Our sample of early voting sites was a fraction of our overall program. In order to achieve a more precise measurement, a different experimental design may be required to encompass the entirety of programming.

While unusual, there is precedent for larger (>1pp) presidential turnout effects, such as in <u>HeadCount's 2024 voter registration sweepstakes</u> and in 2016 research on early voting festivals (<u>Green & McClellan 2017</u>).


Comparing to 2022

In 2022, our Party At The Polls RCT concluded that the turnout effect of parties in our target audience was **+2.7pp** with CACE analysis and **+1.2pp** with ITT analysis.

Why are our results better in 2024?

The early investment by funders in 2024 enabled us to build the infrastructure to improve our targeting methods and identify strong partners and grantees.

Targeting: When We All Vote spent the first half of 2024 building out infrastructure to identify early voting site addresses around the country and cluster individual voters based on their proximity to early voting sites, so we reached individuals who actually lived proximate to them.

Sample targeting resource shared with partners where sites in green have more impact potential than sites in yellow

Comparing to 2022 (cont'd)

Programming: Recruitment and preparation of Party at the Polls event hosts also improved this cycle.

In 2024, the average partner hosted more parties than in 2022 (~3.3 vs ~2.3), and 24% of hosts had previously participated in the program. More experienced hosts holding multiple parties led to more opportunities for attendance and more efficient use of Party at the Polls grants.

In 2022, When We All Vote only received funding in early September for grant disbursement and programming. By the same time In 2024, the first round of hosts had already received grants, completed trainings, and were planning and advertising parties.

Host guides, toolkits, and event supplies were all available on a much earlier timeline, which ensured Party at the Polls events were better resourced.

Excerpt from the Host Guide (first published in August), instructing hosts on how to receive physical materials for their parties.

EXPERIMENT #1:

Voter Outreach RCT

Research Question: Can we do less voter outreach advertising Parties At The Polls and still see significant turnout effects?

By analyzing cost-per-vote of two different levels of voter contact, we hoped to determine which "mix" of modes maximize voter participation while minimizing cost.

Our sample for this experiment were individuals in our target audience living in 89 "early vote site catchment areas" across Clark and Washoe counties in Nevada, and Wayne and Oakland counties in Michigan. We randomly assigned early voting sites to one of two treatment arms, and individuals in treatment were invited to a Party at the Polls event near them via mail piece, phone call(s), and text message(s) depending on the treatment assignment.

With the exception of Washoe county, all individuals in treatment received advertising for a Party at the Polls event near them.

EXPERIMENT METHODS:

Regression Approach

- In both experiments, we used a blocked, clustered approach with a regression model of the form: Voted_24 ~ Assigned_Trt + Contact_Strata + Voted_22 + Voted_20 + Age + Age^2 + Cluster_Size
- In both experiments, blocks were constructed using the estimated number of targets within a randomization unit, with 5 blocks per county.
- In Experiment 1, the randomization unit (and hence the cluster) was Early Vote site, whereas in Experiment 2, the randomization unit was Zip Code.
- To confirm our findings and report significance, we relied on Randomization Inference (RI), rather than simply using the regression output and relying on the assumptions that come with this.
- In both experiments, we prioritized analysis of ITT (intent-to-treat). In the case of digital ads, we didn't know all the individuals who received them, so could not calculate the CACE (compliance average causal effect). In the case of the voter outreach RCT, we did not spend resources doing outreach to targets who would have fallen in our universe but voted before they would have received voter outreach.

EXPERIMENT METHODS:

Randomization Inference

- Randomization inference is a method to understand how our actual results compare to a number
 of simulated alternative scenarios. It allows us to explore the strong null hypothesis of no
 treatment effect for any subject through the exploration of all potential outcomes.
- It involves using our randomization protocol to simulate 1,000 alternative random assignment scenarios to create 1,000 new datasets.
- We then run our estimation regression on each of these 1,000 datasets but use "simulated treatment assignment" instead of true treatment assignment. We record the simulated ITT estimate for each regression.
- Lastly, we plot each of the *n* simulated estimates in a histogram and find where our true ITT estimate falls in the distribution. The number of simulated estimates that are greater than or equal to the true estimate divided by *n* is the p-value (i.e. the probability that we would see a result at least as extreme as ours given that the true effect of the intervention is 0).
- Randomization Inference is preferable in this scenario because it requires fewer assumptions
 and it considers the uncertainty that comes from our exact random assignment protocol (which
 is the main source of uncertainty).

Voter Outreach RCT DVC Summary

Across modes for this RCT, we attempted over 571,000 voters, reaching out to 434,000 of them via mail, 335,000 via P2P text, and 25,000 via robo calls, as determined by their treatment assignment and contact information availability.

The demographic breakdown of those we conducted outreach to can be seen in the cross-tabs to the right.

Our overall target audience was people under the age of 35 and people of color of any age. Voters were also prioritized based on their turnout score. We did not use gender in our targeting.

AGE	%	2020 TURNOUT	%
18-25	24.0%	Yes	52.2%
26-35	36.7%	No	47.8%
36-50	16.0%	2022 TURNOUT	
51-64	11.6%	Yes	35.5%
65+	11.0%	No	64.5%
Unknown	0.9%	TURNOUT SCORE	
GENDER		0-9.9	0.8%
Female	43.0%	10-19.9	1.3%
Gender Expansive	0.1%	20-29.9	3.3%
Male	44.4%	30-39.9	14.8%
Unknown	12.6%	40-49.9	14.0%
RACE		50-59.9	14.8%
Asian or Pacific Islander	9.3%	60-69.9	14.1%
Black	31.2%	70-79.9	13.5%
Hispanic or Latino	21.5%	80-89.9	15.3%
Native American	0.1%	90-100	6.3%
White	36.6%	Unknown	1.8%
Unknown	1.3%		

KEY RESULTS:

Heterogeneous Effects

	Estimate	Significance	RI P-Value
Recent Registration	+4.9pp (strd)	V	0.024
Within past 4 years	+5.0pp (light)		0.016
Under 25	+2.9pp (strd)	X	0.084
	+2.4pp (light)	X	0.104
Under 35	+3.4pp (strd)	v	0.002
	+2.1pp (light)	X	0.092
Over 35*	+2.4pp (strd) +1.9pp (light)	V	0.024 0.032
Culture of Early Voting:	+4.3pp (strd)	V	0.012
Nevada	+4.1pp (light)		0.02

Hangin' up on robos

In 2024, robocalls were challenging to execute. In addition to the voter file containing few individuals with landlines, even those landlines were found to be problematic. 33% of these landlines were identified by our vendor's software as being uncallable, and an additional 57% of the calls attempted designated as "no ring," "operator intercept," or "fax." While we intended to call almost 3.5M landlines as part of Party at the Polls advertising, only 29% of those calls successfully went through.

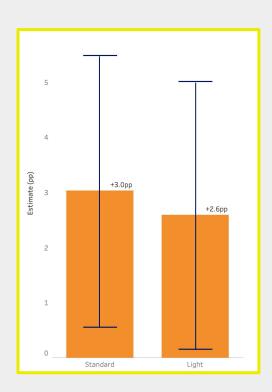
In order to assess if robo calls added value to our programming, we compared the ITT estimates for Standard treatment vs. Control for those who were fully contactable across modes vs. those who lacked a landline.

We found **no detectable difference** between the turnout of these two treatment groups.

Both due to implementation challenges and results, we no longer recommend the use of robo calls for Party at the Polls, but we are exploring other types of phone outreach moving forward.

	Estimate	Std. Error
Contactable across modes	+2.1pp (strd) +1.0pp (light)	0.011 0.011
Contactable by mail & text only	+2.5pp (strd) +1.7pp (light)	0.011 0.011

RESULTS:


Cost Analysis

	Group Size	Est. Effect	Net Votes	Est. Cost/ Net Vote
Standard	248,055	+3.0pp	7,442	\$19-\$23
Light	250,617	+2.6pp	6,516	\$21-\$26

The standard outreach mix was the most cost-effective method of turning out voters.

Our cost estimate includes both the cost of the direct voter contact advertising to the Party at the Polls event that came directly from When We All Vote and the money granted to event hosts to cover the costs of parties and additional advertising. In 2022, the comparable cost was around \$35/net vote. We attribute the decrease in cost to cost savings from scaling the program in 2024, as well as the increased impact observed.

A cost range is provided due to the fact that voters contacted could have attended a variety of parties (since they were given the ability look at our full list of nearby parties), not just the parties associated with a treatment early voting site.

EXPERIMENT #2:

Digital Ads RCT

Research Question: Can we replace mail outreach (the most costly mode of voter contact) with digital ads?

By analyzing cost-per-vote of digital advertising tactics, we hoped to be able to determine which methods maximize voter participation while minimizing cost.

Unfortunately, this experiment did not have any significant results due to a myriad of implementation challenges, narrow digital-ad targeting, and a small sample of zip codes among which to randomize.

Our sample for this experiment were individuals in our target audience living in 20 zip codes across Genesee, Kent, and Washtenaw counties in Michigan. We randomly assigned zip codes to treatment, and individuals in treatment were invited to a Party at the Polls event near them via phone call and text message and served ads on Meta, which linked to an event page for their closest Party at the Polls.

Experiment #2

Digital Mix

2 phone calls, 2 text messages, Meta ads, and Party at the Polls event

Control

No outreach and no Party at the Polls event

EXPERIMENT #2:

Digital Ads RCT

Our results from the Digital Ads experiment come from a blocked, clustered ITT regression that estimates the effect of being served the digital ads regimen as compared to a control group which received no voter contact.

The initial regression results showed a negative coefficient estimate on treatment — indicating that the people in treatment turned out at a lower rate than people in control.

This is obviously a counterintuitive result — we don't expect people who are served digital ads to be less likely to vote.

Given the particular nature of our experimental setup and randomization, we used randomization inference and found a p-value of around 0.18. This tells us that the negative magnitude of our estimate was insignificant and likely due to an unlucky random draw.

Sample Meta ad. Sample Michigan specific caption: "Join our Flint Barbershop Talks Party at the Polls on Saturday, October 26 1 - 3 PM.
◎ Free Food Prizes & Swag Resources & Voter Education"

Comparing Voter Outreach to Digital Ads

The contrast between overwhelmingly positive results in the Voter Outreach RCT and insignificant results in Digital Ads RCT requires further inquiry.

- **Cluster Size**: Digital Ads RCT advertising was limited to treatment zip codes, which caused challenges around reaching proximate targets and resulted in a smaller sample size.
 - Through our proximity targeting in the Voter Outreach RCT, the average distance for an individual to an early voting site was about 1.4 miles.
 - By limiting to a small number of zip codes, we were not able to build an effective ad campaign, which would have provided diffuse advertising instead reaching a very small number of targets multiple times.
- Party at the Polls Event Frequency: Additionally, across tiers, our Digital Ads counties only held 29 parties, compared to the 85 held in Voter Outreach RCT counties.
- State Differences: Finally, while both experiments had counties in Michigan, Digital Ads was limited to Michigan alone, whereas Voter Outreach also took place in Nevada. Statewide early voting was new in Michigan this election cycle and gave a lot of latitude to local election officials to execute early voting. The Detroit area offered more opportunities for early voting (with a longer time period) and was in the Voter Outreach experiment alone.

While we were able to successfully execute the Voter Outreach RCT at scale, the Digital Ads RCT ultimately suffered from a lack of experimental power to be able to determine significance.

FULL PROGRAM IMPACT:

Extrapolating RCT Results

If we apply the turnout effect we see in our standard mix results across the entirety of our 2024 program, we estimate **+324,654 net votes** (*CI range: 22,705 - 695,272*) across our program states.

AZ	48,186	(3,369 - 103,194)
GA	71,212	(4,980 - 152,505)
МІ	55,077	(3,852 - 117,953)
NV	27,908	(1,952 - 59,768)
NC	58,664	(4,103 - 125,664)
PA	51,740	(3,618 - 110,804)
WI	11,867	(829 - 25,414)

MULTI-CYCLE IMPACT:

Looking at the 2024 turnout of our 2022 RCT

In 2022, we ran our <u>"Target State RCT"</u> in NC, PA, and MI. We found the overall turnout impact of Party at the Polls to be between +1.2pp (ITT) and +2.7pp (CACE) within our target audience.

We wanted to evaluate whether these results hold over across election cycles. So, we took our universe of 5.6M people, matched them to the 2024 voter file (10% could not be matched), and then re-ran the 2022 analysis with 2024 turnout as the outcome.

Overall, we were **unable to detect** a significant effect among those assigned to treatment in 2022 compared to control.

To narrow in on North Carolina, where we saw higher-than-average turnout effect in 2022, we found a 2024 turnout effect that was **positive (+2.2)**, **but insignificant** with RI.

Party at the Polls Mail Program Turnout

- Our mail outreach program advertising PATP was the 3rd largest nonpartisan voting outreach effort for the 2024 election, with nearly 7 million mail pieces sent to our target audience in AZ, GA, MI, NC, NV, PA, and WI.
- Overall, people who were sent mail turned out at +1.4pp than non-mail targets in our PATP audience
 - Targeted people had the highest turnout in PA (68.6%), NC (67.0%), and AZ (60.5%)
 - Targeted people who were under-35 or sporadic voters had slightly higher turnout than their non-targeted counterparts

Voting is happening now in your state and it's time to make a plan to vote early. Grab your friends, family, and neighbors, and join us for a Party at the Polls in your community!

Scan this QR code to find an early voting party near you. For more information, visit: www.WeAll.Vote/party When We All Vote 1156 15th St NW Suite 1000 Washington, DC 20005

We Vote Early. **We Vote Together.**

Early voting in Arizona is happening now through November 1!

Join us for a Party at the Polls with free food, music, and fun activities for the whole community.

Voters like you are casting their ballots early Don't miss the party scan this QR code to RS\

For more information, visit: www.WeAll.Vote/party

WHEN WE ALL VOTE

Need to get ready to vote? Check your voter registration, find your